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Assimilatory nitrate reductases catalyze the reduction of nitrate
to nitrite, which is the first and rate-limiting step of nitrogen
assimilation in algae, fungi, and higher plants.1 The nitrate
reductase from the thale cress,Arabidopsis thaliana, is a dimer,
with each of the∼103000 molecular weight monomers containing
one molybdenum associated with a single pterin dithiolene
cofactor, a flavin adenine dinucleotide cofactor, and a cytochrome
b-type heme. During the catalytic cycle, reducing equivalents in
the form of NADH enter the enzyme at the flavin site and are
subsequently transferred by intramolecular electron transfer via
the heme to the molybdenum center, where the two-electron
reduction of nitrate takes place:

The assimilatory nitrate reductases are classified as members of
the sulfite oxidase family of molybdenum enzymes.1,2 The active-
site structure of sulfite oxidase has been the subject of much
study3-6 and the oxidized enzyme possesses two ModO ligands,
two Mo-S from the cofactor dithiolene, plus one Mo-S from a
conserved cysteine residue.4,6,7 The amino acid sequences of the
molybdenum cofactor binding domain of assimilatory nitrate
reductases and sulfite oxidases are very similar.1,2 Because of this,
closely related molybdenum active site structures have been
widely assumed, with two ModO, plus dithiolene and cysteine
(Cys-191) sulfur donors to molybdenum.8 We report herein an
extended X-ray absorption fine structure (EXAFS) study of the
molybdenum site ofArabidopsisnitrate reductase, and show

that, unlike sulfite oxidase, the enzyme undergoes changes in
Mo-S coordination during catalytic turnover.

In this paper we present the Mo K-edge EXAFS ofArabidopsis
nitrate reductase in three different forms: oxidized as-isolated,
reduced, and oxidized after catalytic turnover of excess nitrate
(nitrate-oxidized).9 Figure 1 compares the EXAFS Fourier
transforms of oxidized as-isolated nitrate reductase and nitrate-
oxidized nitrate reductase9 with that of oxidized sulfite oxidase.
The transforms show that the EXAFS of all three species is
dominated by two major interactions, giving rise to the peaks at
R + ∆ ≈ 1.8 and 2.3 Å. These are attributable to ModO and
MosS interactions at about 1.7 and 2.4 Å, respectively.13 For all
three Fourier transforms the ModO peak has similar intensity.
However, while the transform of nitrate-oxidized enzyme is almost
identical with that of oxidized sulfite oxidase,4 the as-isolated
oxidized nitrate reductase shows a significantly less intense Mo-S
peak. Figure 2 shows the EXAFS data, the results of curve-fitting,
plus the corresponding EXAFS Fourier transforms of nitrate
reductase in oxidized as-isolated, dithionite reduced, and nitrate-
oxidized forms. The curve-fitting analysis indicates two ModO
and two∼2.4 Å Mo-S ligands for as-isolated enzyme, and two
ModO and three MosS for the nitrate-oxidized sample. Gel
filtration of the nitrate-oxidized sample restores the as-isolated
oxidized enzyme (the EXAFS is identical), and the above results
are reproducible with repeated cycles of reduction and reoxidation,
indicating that redox-conditioning14 is not occurring. Furthermore,
addition of excess nitrite or nitrate to oxidized as-isolated enzyme† Stanford Synchrotron Radiation Laboratory.
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Figure 1. Molybdenum K-edge EXAFS Fourier transforms (phase-
corrected for sulfur backscattering) of oxidizedArabidopsis nitrate
reductase, compared with that of oxidized human sulfite oxidase.4 The
transforms were computed using identicalk-ranges of 2-14 Å-1.
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caused no significant changes in the EXAFS. Thus, catalytic
turnover causes changes in the Mo-S coordination in the oxidized
enzyme, and these can be reversed by gel-filtration, suggesting
involvement of a low molecular weight species. No such changes
in Mo-S coordination are observed for sulfite oxidase.4 The
present data show no direct evidence for anion coordination to
molybdenum,5 although these might not be detectable by EXAFS
because low atomic number scatterers can be elusive.13 On the
other hand, we also note that oxidized sulfite oxidase, which is
very similar to nitrate-oxidized nitrate reductase, is not expected
to have anion coordination to molybdenum.4-6

Inclusion of a third sulfur ligand in the curve-fitting gave a
slightly improved fit (the fit-error15 was reduced by 7%), with a
Mo-S bond length of 2.57 Å. Unfortunately, despite the good
signal to noise of our data,16 this long Mo-S cannot be identified
definitively because its EXAFS is nearly of opposite phase to
that of the 2.40 Å Mo-S, and partial cancellation occurs.13 This
is why no well-defined 2.57 Å Fourier transform peak is observed
in Figure 2. Nevertheless, the refined bond length and Debye-
Waller factors are chemically reasonable, and are typical of Mo-S
coordinated trans to a ModO group.14,17 Thus, the oxidized and
nitrate-oxidized active site structures may be simply related by a
conformational change around molybdenum, one of three Mo-S
ligands being located trans to one ModO in the as-isolated
enzyme, re-arranging to a cis relationship following catalytic turn-

over (Figure 3). Ligand rearrangement from the cis to the trans
position has also been observed following oxo-transfer in low
molecular weight molybdenum complexes,18 and oxo group acti-
vation by trans effects from thiolate ligation has been suggested
to be important in some oxo-transfer reactions,19 but evidence
for trans oxo-thiolate coordination in the enzyme systems has been
lacking.20 Although the exact relevance to the catalytic mech-
anism remains to be established, the present work provides the
first suggestion of such ligation in a molybdenum enzyme system.

The amino acid sequences of the molybdenum domain of nitrate
reductase and sulfite oxidase are very similar. The recent crystal
structure of sulfite oxidase6 shows that the enzyme possesses a
substrate binding pocket formed by three arginines, two of which
are conserved in the active site ofArabidopsisnitrate reductase.
The third arginine is replaced by a methionine residue (Met 473)
in Arabidopsisnitrate reductase, but is not conserved among other
nitrate reductases. The crystal structure of sulfite oxidase also
shows a sulfate in this pocket that is quite distant from Mo (∼4.7
Å for the closest oxygen) thus structurally distinct from the anion
complexes observed by Mo(V) EPR2,3,5 and by EXAFS.5 As
pointed out by Kisker et al.,6 the different arginine contents of
sulfite oxidase and nitrate reductase can be rationalized in that
nitrate has to be bound with one oxygen directed toward Mo.
Other significant differences between the two enzymes include a
tyrosine residue close to molybdenum in sulfite oxidase (Tyr 322),
which is an asparagine (Asn 336) in nitrate reductase. This
tyrosine residue has been suggested as a candidate for that
controlling the transition between high-pH and low-pH Mo(V)
sulfite oxidase;2,3 however, the observation of analogous Mo(V)
EPR signals inChlorella nitrate reductase argues against this.21

In summary, our Mo K-edge EXAFS studies have provided
direct evidence for conformational changes involving Mo-S
ligation induced by catalytic turnover of nitrate to nitrite. This
quite unexpected result indicates significant differences between
the active site structures of sulfite oxidase and nitrate reductase.
The nature of this conformational change is most probably due
to increased trans effects for one of the Mo-S bonds, although
dissociation of a thiolate ligand cannot be excluded.
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Figure 2. Molybdenum K-edge EXAFS and EXAFS Fourier transforms
of Arabidopsisnitrate reductase. The solid lines show experimental data,
while the broken lines show the best fit. Part A shows the EXAFS oscilla-
tions and part B shows the corresponding EXAFS Fourier transforms,
phase-corrected for sulfur backscattering. The best fit for oxidized, as-
isolated enzyme was obtained with 2 ModO at 1.733(3) Å,σ2 ) 0.0028-
(2) Å2, 2 Mo-S at 2.404(5) Å,σ2 ) 0.0039(3) Å2, 1 Mo-S at 2.573(9)
Å, σ2 ) 0.0043(3) Å2, for nitrate-oxidized enzyme 2 ModO at 1.714(3)
Å, σ2 ) 0.0032(2) Å2, 3 Mo-S at 2.403(4) Å,σ2 ) 0.0049(2) Å2, and
for dithionite reduced enzyme 1 ModO at 1.714(4) Å,σ2 ) 0.0013(3)
Å2, 3 Mo-S at 2.398(3) Å,σ2 ) 0.0022(1) Å2, 1 Mo-O at 2.18(2) Å,
σ2 ) 0.0049(2) Å2. As discussed in the text, the presence of a 2.57 Å
Mo-S in oxidized as-isolated enzyme is only tentatively established. The
σ2 values are the Debye-Waller factors.13 The values in parentheses are
the estimated standard deviations obtained from the diagonal elements
of the covariance matrix; we note that these precisions will be smaller
than the accuracies which are typically estimated as(0.02 Å for bond
lengths and(20% for coordination numbers and Debye-Waller factors.

Figure 3. Postulated structures for the active sites ofArabidopsisnitrate
reductase in oxidized as-isolated, nitrate-oxidized, and reduced forms.
While geometric information is not directly available from the present
EXAFS analysis, the oxo groups are expected to be cis,22 as shown. One
of the dithiolene Mo-S ligands is presumed to be trans to an ModO
ligand in the oxidized as-isolated enzyme, although we note that other
possibilities exist.
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